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Abstract—The Okamoto-Uchiyama cryptosystem is one among 

many public-key algorithms which relies on the difficulty of integer 

factorization for its security, much like the better-known RSA 

cryptosystem. While relying on the same base principle, both 

algorithms use different ways in computing both the private and 

public keys, as well as the encryption and decryption method. As 

such, a comparison between both cryptosystems should lead to a 

better understanding regarding the properties, as well as the strong 

and weak points of both cryptosystems. 
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I.   INTRODUCTION 

Cryptography has been a major part in security, especially in 

modern times where technology and communications have 

greatly improved since several centuries prior. Many forms of 

communication over the net, as well as crucial data transfer, are 

vulnerable to threats from an unauthorized third party, such as 

wiretapping, data manipulation, and more. Which is why, 

security measures such as data encryption as well as digital 

signatures, which implements the principles of cryptography, 

are crucial to ensure that transferred data remains ineligible to 

read by unauthorized party and to prove that the data was not 

tampered in any kind of method. 

Among the many forms of cryptography, public key 

cryptography was one that is widely used by the public. 

Compared to the usual symmetric key cryptography, it uses two 

different keys for encryption and decryption process, making it 

relatively more secure as the private key is not shared with 

anyone else, albeit not without its own set of drawbacks. The 

RSA algorithm is one of the most famous and widely used in 

real-life applications. 

One other example of the public-key algorithms is the 

Okamoto-Uchiyama algorithm. While being in the same group 

as RSA which relies on integer factorization problem, they use 

different methods in generating the keys, as well as the 

encryption and decryption processes. While not as popular as 

the RSA, it can still be used for the same functionality. This 

paper aims to analyze the properties of the Okamoto-Uchiyama 

cryptosystem, while being compared to the RSA cryptosystem, 

measuring both outputs using similar metrics in hopes that it will 

bring better understanding regarding the nature of the two 

cryptosystems, as well as their advantages and drawbacks. 

 

II.   THEORIES 

A. Cryptography 

The term cryptography originated from the word “cryptós” 

and “gráphein” in Greek language, which could be translated as 

secret writing. Cryptography refers to the technique used to 

maintain the security of a message. The main processes in 

cryptography revolves around encryption, which encode a 

message into a ciphertext to make it difficult to read, and 

decryption, which decode a ciphertext into the original message 

so it may be read by the receiver. The term message that is used 

in cryptography actually have a lot of varieties, from simple text 

messages, to a more complex form such as images, audio files, 

and videos. 

Cryptography has long history that could be traced back into 

the ancient Egyptian period. A lot of cryptography techniques 

have been created since then. The “classic’ cryptography 

techniques mostly revolve around substitution and transposition 

methods to encrypt the message into ciphertext. The message 

itself was mostly limited to basic alphabets, and still uses paper 

to write down the message or the ciphertext. 

The advent of technology brought a lot of major 

improvements to the cryptography techniques. The ‘modern’ 

cryptography techniques still retain the classic substitution and 

transposition principles, while adding new techniques such as 

the XOR function, since the messages are mostly processed in 

bit or byte forms. The processing power of modern computers 

also allow the encryption and decryption processes to be 

executed more quickly, while allowing messages of larger sizes 

to be processed as well. However, the modern techniques still 

have a lot of flaws, which motivates researchers to develop 

better methods to counter those flaws, developing cryptography 

further as a whole. 

 

B. Public Key Cryptography 

Prior to 1970s, the techniques used in cryptography were 

classified as the symmetric key cryptography, which used a key 

to encrypt a message, while the same key is later used to decrypt 

the ciphertext into the original message. As such, the key plays 

a major part in the algorithm, but at the same time, should the 

key ever fall into the hands of an unauthorized party, the 

ciphertext would be vulnerable to many kinds of attack, which 

might reveal the message as a whole. Because of that, ensuring 
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that the key is known only to the sender and receiver is crucial, 

which usually requires a private channel which might be costly. 

The concept of public key cryptography was introduced in 

1976, by researchers Whitfield Diffie and Martin E. Hellman, in 

the paper “New Directions in Cryptography”. The idea revolves 

around using two different keys for encryption and decryption 

processes. One is the public key, which as the name implies, is 

available to the general public and can be used by anyone. The 

other one is the private key, which is kept secret by the owner. 

The encryption process would have the sender encrypt the 

message using the receiver’s public key. The receiver would 

then receive the ciphertext and decrypt it into the original 

message using his own private key. The idea could be reversed 

as well, which is used as the principle for digital signatures. The 

sender would sign a document using his own private key before 

sending it. The receiver would then verify the signature using 

the sender’s public key, to ensure that the document was not 

tampered in any way, while at the same time verify that the 

sender was indeed the one who sent the document. 

 

 
Image 1. Public key cryptography process 

Source:(https://www.tutorialspoint.com/cryptography/public

_key_encryption.htm) 

 

The security aspect of the public key cryptography lies in the 

fact that it is difficult to derive the private key from the public 

key. Public key algorithms use classic calculation problems 

which took a tremendous amount of time and computing 

resources to generate the public and private keys, such as the 

integer factorization problem and the discrete logarithmic 

problem. The larger the number that is used in the calculation, 

the harder it is to figure out the keys without sufficient info, 

which is why most algorithms use large numbers to make sure 

it is harder to break. 

The public key algorithm answers to the problem in sending 

keys through a private channel. Since the private keys will 

remain a secret from the general public, there is no reason to 

send any keys because anyone can access the public key. At the 

same time, the same keys can be used repeatedly in numerous 

occasions, while in symmetric key algorithm, the keys need to 

be replaced often as a safety measure should a key managed to 

be intercepted by an unauthorized party. However, the 

encryption and decryption processes done using public key 

algorithms tend to have longer execution time than symmetric 

key algorithms, due to the calculation of very large numbers. 

The messages are generally converted into numbers during the 

encryption process, and when calculated together with the key, 

would produce a large number that might be even bigger than 

the original message, increasing the size of the resulting 

ciphertext. As such, most public key algorithms are instead used 

to encrypt the key for the symmetric key algorithms, which the 

receiver would his own private key to decrypt the symmetric key 

which is later used to decrypt the ciphertext into the original 

message. 

 

C. Rivest-Shamir-Adleman (RSA) Algorithm 

The Rivest-Shamir-Adleman algorithm, also known as the 

RSA algorithm, was one of the most well-known public key 

algorithms. It was named after its founders, Ronald Rivest, Adi 

Shamir, and Len Adleman, and was first introduced in 1976. The 

algorithm is based on the prime integer factorization problem. 

The method to generate the public and private keys for 

encryption and decryption processes are as follows: 

1. Select two prime numbers p and q. It is preferred for both 

p and q to be quite large to make it harder to decipher. 

2. Calculate 𝑛 = 𝑝𝑞 

3. Calculate (𝑛), or the totient of n. (𝑛) refers to the 

number of integers which are less than n and are 

relatively prime to n. It can be calculated using the 

formula: 

(𝑛) =  (𝑝)(𝑞) = (p − 1)(q − 1)   
(1) 

4. Choose a random integer e such that 1 < e < (𝑛) and e 

must be relatively prime to (𝑛) 

5. Calculate an integer d using the following formula: 

𝑒𝑑 ≡ 1(𝑚𝑜𝑑 (𝑛))  
(2) 

The formula could be calculated using the Euclidean 

algorithm, or using the following formula: 

𝑑 =  
1 + 𝑘(𝑛)

𝑒
 

(3) 

where k is an integer 1, 2, 3, … which would result in d 

being an integer.  

6. The public key is the pair (e, n), while the private key is 

the pair (d, n). n is called the modulus while e and d are 

called the exponents. 

Suppose that the sender wishes to encrypt a message, then 

he/she must follow the following steps: 

1. The message must be separated into blocks m1, m2, …, mi 
such that 0 ≤  𝑖 < 𝑛 − 1. 

2. For each message block mi, by using the receiver’s public 

key (e, n), calculate the ciphertext block ci using the 

following formula: 

𝑐𝑖 =  𝑚𝑖
𝑒  𝑚𝑜𝑑 𝑛 

(4) 

To decrypt the ciphertext back into the original message, the 

receiver must follow the following steps: 

1. Define the ciphertext blocks c1, c2, … 

2. For each ciphertext block ci, by using the receiver’s 

private key (d, n), calculate the message block mi using 

the following formula: 

𝑚𝑖 =  𝑐𝑖
𝑑  𝑚𝑜𝑑 𝑛 

(5) 

Generally, the private key will remain secure as long as n 
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remains large enough to prevent brute force attacks. The 

moment p and q can be figured out, then d can also be derived, 

allowing the attacker to be able to decrypt the ciphertext. As 

such, it is advised that the numbers should be large enough in 

size, at least 100 digits for both p and q. 

 

D. Okamoto-Uchiyama Cryptosystem 

The Okamoto-Uchiyama cryptosystem was named after its 

founders Tatsuaki Okamoto and Shigenori Uchiyama, and was 

introduced in 1998. The algorithm satisfies the property of 

homomorphic encryption, where it is possible to perform 

calculations on the encrypted data without the need to decrypt 

the data first. It also uses a probabilistic property using a random 

constant when encrypting each part of the message. 

The method to generate the public and private keys follows 

these set of steps: 

1. Select two prime numbers p and q. Both p and q must 

have the same length k-bits. 

2. Calculate 𝑛 =  𝑝2𝑞 

3. Select a random generator g such that 1 < 𝑔 < 𝑛 − 1, 

and 𝑔𝑝−1  ≢ 1  𝑚𝑜𝑑 𝑝2.  Haryanto et al [2] further 

simplifies this equation and the value g is valid as long as 

it satisfies: 

𝑔(𝑝2) = 𝑔𝑝(𝑝−1) 𝑚𝑜𝑑 𝑝2 = 1 

(6) 

4. Calculate ℎ =  𝑔𝑛 (𝑚𝑜𝑑 𝑛) 

5. The public key is (n, g, h), while the private key is the 

pair (p, q) 

The encryption process will use a random constant which will 

lead to a probabilistic cryptosystem. The encryption steps are as 

follows: 

1. Ensure message m satisfies 0 < 𝑚 <  2𝑘−1 

2. Select random integer 𝑟 ∈  ℤ/𝑛ℤ 

3. Generate ciphertext c using the formula: 

𝑐 =  𝑔𝑚ℎ𝑟  (𝑚𝑜𝑑 𝑛) 

(7) 

The decryption process will follow these steps: 

1. Define function L(x) as: 

𝐿(𝑥) =  
𝑥 − 1

𝑝
 

(8) 

2. From ciphertext c, derive the message m using the 

formula: 

𝑚 =  
𝐿(𝑐𝑝−1 𝑚𝑜𝑑 𝑝2)

𝐿(𝑔𝑝−1 𝑚𝑜𝑑 𝑝2)
 (𝑚𝑜𝑑 𝑝) 

(9) 

The cryptosystem satisfies the following homomorphic 

encryption, that is for any two plaintexts 𝑚0 and 𝑚1where 𝑚0 +
𝑚1 < 𝑝, 

𝐸(𝑚0, 𝑟0) ∗  𝐸(𝑚1, 𝑟1) =  𝐸(𝑚0 + 𝑚1, 𝑟2) 

(10) 

where  𝐸(𝑚, 𝑟) represents the encryption process of message 

m with random constant r. However, as Haryanto et al [2] stated, 

the equation is only satisfiable as long as 𝑟2 remains dependent 

on both  𝑟0 and 𝑟1, for example, by process of addition. In the 

event where 𝑟0,  𝑟1, and 𝑟2 are completely independent from each 

other, then the equation would be proven false. 

 

III.   TESTING 

A. Hardware Specifications 

The testing is done using the author’s personal laptop. The 

specifications are as follows: 

 

Operating System Windows 10 Home Single 

Language 

Processor AMD Ryzen 5 4600H with 

Radeon Graphics 

CPU @ 3.00 GHz 

Architecture 64-bit OS 

Memory 8.00 GB 

Table 1. List of hardware specifications used for the testing 

period 

 

B. Algorithms 

Both the RSA and the Okamoto-Uchiyama algorithms are 

implemented using the programming language Python, with 

additional functions used from the library libnum, 

pycryptodomex, and hashlib. The functions used in the 

Okamoto-Uchiyama algorithm are as follows: 

1. def gen_key(k): 

2.     p = getPrime(k) 

3.     q = getPrime(k) 

4.     n = p**2 * q 

5.     while True: 

6.         g = getRandomRange(1, n-1) 

7.         if pow(g, p * (p-1), p**2) == 

1: 

8.             break 

9.     r = getRandomRange(1, n-1) 

10.     h = pow(r, n, n) 

11.     return (n, g, h,p,q) 

12.   

13. def string_to_int(string): 

14.     temp = "" 

15.     for i in range(len(string)): 

16.         if(string[i] != ' '): 

17.             rep = ord(string[i]) - 38 

18.         else: 

19.             rep = 99 

20.         temp = temp + str(rep) 

21.   

22.     return int(temp) 

23.   

24. def int_to_string(num): 

25.     numstring = str(num) 

26.     string = "" 

27.     arr = [numstring[i:i+2] for i in 

range(0, len(numstring), 2)] 

28.     for element in arr: 
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29.         temp = int(element) 

30.         if(temp != 99): 

31.             string = string + chr(temp 

+ 38) 

32.         else: 

33.             string = string + ' ' 

34.   

35.     return string 

36.   

37.   

38. def encrypt(m, n, g, h): 

39.     num = str(string_to_int(m)) 

40.     arr = [num[i:i+2] for i in 

range(0, len(num), 2)] 

41.     c = [] 

42.     for element in arr: 

43.         r = getRandomRange(1, n) 

44.         temp = (pow(g, int(element), 

n) * pow(h, r, n)) % n 

45.         c.append(temp) 

46.     return c 

47.   

48. def L(x, p): 

49.     return (x-1)//p 

50.   

51. def divide(x, y, p): 

52.     return x*(libnum.invmod(y, p)) 

53.   

54. def decrypt(c,p, g): 

55.     message = "" 

56.     for element in c: 

57.         cp = pow(int(element), p-1, 

p**2) 

58.         gp = pow(g, p-1, p**2) 

59.   

60.         x = divide(L(cp, p), L(gp, p), 

p) % p 

61.         message = message + 

int_to_string(x) 

62.     return message 

 

Code 1. Functions for the Okamoto-Uchiyama algorithm 

 

It is to be noted that this implementation doesn’t cover all 

possible characters for the encryption process, as the integer 

representation for each character is modified so it will consist of 

exactly two digits. In return for allowing all letters and numbers 

to be encrypted, characters with ASCII decimal value below 48 

will cause an error during the decryption process, with the 

exception of the character SPACE which is converted so it will 

be represented using the value 99. 

The functions used in the RSA algorithm are as follows: 

1. def gcd(a, b): 

2.     while b != 0: 

3.         a, b = b, a % b 

4.     return a 

5.   

6. def generate_keypair(k): 

7.     p = getPrime(k) 

8.     q = getPrime(k) 

9.     n = p * q 

10.   

11.     toitent = (p-1) * (q-1) 

12.     e = getRandomRange(1, toitent) 

13.   

14.     g = gcd(e, toitent) 

15.     while g != 1: 

16.         e = getRandomRange(1, toitent) 

17.         g = gcd(e, toitent) 

18.   

19.     d = libnum.invmod(e, toitent) 

20.   

21.     return ((e, n), (d, n)) 

22.   

23. def encrypt(public, plaintext): 

24.     e, n = public 

25.     cipher = [pow(ord(char),e,n) for 

char in plaintext] 

26.     return cipher 

27.   

28. def decrypt(private, ciphertext): 

29.     d, n = private 

30.     plain = [chr(pow(char,d,n)) for 

char in ciphertext] 

31.     return ''.join(plain) 

 

Code 2. Functions for the RSA algorithm 

 

C. Testing Parameters 

The parameters that will be tested and compared are as 

follows: 

1. Key generation time with varying key sizes 

2. Ciphertext size compared to the original message size 

with varying message 

3. Encryption time with varying key and message sizes 

4. Decryption time with varying key and message sizes 
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IV. TESTING RESULTS AND ANALYSIS 

A. Testing Results 

The results of the testing processes are as follows: 

1. Key generation 

p 

and 

q 
size 
(bits

) 

Generation time (s) 

RSA Okamoto-Uchiyama 

64 
0.0039973258972167

97 

0.002995729446411

133 

128 
0.0069887638092041

016 

0.016010046005249

023 

256 
0.0139970779418945

31 

0.037018775939941

406 

512 
0.1039998531341552

7 

0.126149177551269

53 

1024 0.4341142177581787 
0.355906963348388

67 

2048 1.7667217254638672 
1.995470285415649

4 

 

2. Ciphertext size 

For this test, the prime integers p and q will have the size 

of 64 bits each. The ciphertext is in text form, so each 

digit is counted as 1 byte. 

Plaintext 

size 

(bytes) 

Ciphertext size (bytes) 

RSA Okamoto-Uchiyama 

10 386 576 

100 3839 5757 

1000 38367 57775 

10000 383404 572367 

100000 3826852 5732172 

1000000 38498965 57673554 

 

3. Encryption time 

Plaint

ext 

size 

(bytes

) 

p 

and 

q 
size 
(bit
s) 

Encryption time (s) 

RSA 
Okamoto-

Uchiyama 

10 128 
0.002014398574

8291016 

0.003980159759

521484 

10 256 
0.005997419357

299805 

0.016995429992

67578 

10 512 
0.030988454818

725586 

0.103999376296

99707 

100 128 
0.012000322341

918945 

0.034011125564

575195 

100 256 
0.054015874862

6709 

0.162000417709

35059 

100 512 
0.284131050109

8633 

1.062177658081

0547 

1000 128 
0.102071046829

22363 

0.330856800079

3457 

1000 256 
0.509296894073

4863 

1.624149560928

3447 

1000 512 
2.833071708679

199 

10.26911187171

936 

 

4. Decryption time 

 

Plaint

ext 

size 

(bytes

) 

p 

and 

q 
size 
(bit
s) 

Decryption time (s) 

RSA 
Okamoto-

Uchiyama 

10 128 
0.001996755599

975586 

0.002001047134

399414 

10 256 
0.006000518798

828125 

0.007975101470

947266 

10 512 
0.034020185470

581055 

0.037991523742

67578 

100 128 
0.012655258178

710938 

0.017999887466

430664 

100 256 
0.061014413833

618164 

0.071998357772

82715 

100 512 
0.343044757843

0176 

0.366112232208

25195 

1000 128 
0.122325658798

21777 

0.179152727127

0752 

1000 256 
0.606773853302

002 

0.708589076995

8496 

1000 512 
3.450299739837

6465 

3.742982625961

3037 

 

B. Analysis 

From the test results, it can be seen that the key generation 

times for both algorithms are relatively similar with only slight 

difference between them. Both algorithms have some similar 

calculations within the key generating process, although the 

random generator part might cause some differences due to the 

random nature which might need longer time to generate a 

number that satisfies the rule. 

While both algorithms generate ciphertext with at least 10 

times larger size than the original plaintext, the ciphertext size 

from the Okamoto-Uchiyama algorithm are generally larger 

than the RSA. This is most likely due to the fact that the 

algorithm works with 𝑛 =  𝑝2𝑞 compared of RSA’s 𝑛 =  𝑝𝑞. 

The resulting 𝑛 would be larger in size, and when is used to 

generate the random constant and during the modulo function, 

the resulting ciphertext would be generally have larger size as 

well. 

The encryption and decryption times are slightly different for 

both algorithms. In RSA’s case, the decryption time is usually 

faster until some point where the encryption time becomes 

faster, although both times are relatively similar with not no 

significant difference. This is probably because the encryption 

and decryption calculations for RSA are almost identical to each 
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other, so it depends on how large the value of the exponents, 

which are e and d. In Okamoto-Uchiyama’s case, the decryption 

time is always faster than the encryption time during the testing 

period. This is due to the fact that the encryption process works 

using exponents m and r, both are heavily influenced by the 

length of the message as well as the length of the primes. On the 

other hand, the decryption process uses only p for the exponent, 

which would make the calculation faster than the encryption. 

That being said, due to the nature of the exponent calculation, 

increasing the variables of message length and primes’ length 

would cause significant rise in both encryption and decryption 

times once they have passed a certain value. 

 

V.   CONCLUSION 

From the test results, it can be concluded that the RSA 

cryptosystem is generally faster than the Okamoto-Uchiyama 

cryptosystem, both from the key generation process, as well as 

the encryption and decryption processes. On the other hand, 

Okamoto-Uchiyama provides larger ciphertext from the 

encryption process, which might be preferable to prevent known 

ciphertext attacks. With homomorphic and probabilistic 

encryption properties, it could be said that the algorithm is safer 

compared to the RSA, especially if there are necessities to do 

calculations on the data without decrypting it first. But in the 

end, both algorithms have their own strengths and weaknesses, 

and it can’t be said that one is better than the other in all aspects. 

So, it goes back to which one is more suitable depending on the 

prerequisites of the solution. 
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