
Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

Comparison of Okamoto-Uchiyama and RSA

Cryptosystems

Kevin Sendjaja / 135170231

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113517023@std.stei.itb.ac.id

Abstract—The Okamoto-Uchiyama cryptosystem is one among

many public-key algorithms which relies on the difficulty of integer

factorization for its security, much like the better-known RSA

cryptosystem. While relying on the same base principle, both

algorithms use different ways in computing both the private and

public keys, as well as the encryption and decryption method. As

such, a comparison between both cryptosystems should lead to a

better understanding regarding the properties, as well as the strong

and weak points of both cryptosystems.

Keywords—Okamoto-Uchiyama, RSA, public key algorithms,

cryptosystem

I. INTRODUCTION

Cryptography has been a major part in security, especially in

modern times where technology and communications have

greatly improved since several centuries prior. Many forms of

communication over the net, as well as crucial data transfer, are

vulnerable to threats from an unauthorized third party, such as

wiretapping, data manipulation, and more. Which is why,

security measures such as data encryption as well as digital

signatures, which implements the principles of cryptography,

are crucial to ensure that transferred data remains ineligible to

read by unauthorized party and to prove that the data was not

tampered in any kind of method.

Among the many forms of cryptography, public key

cryptography was one that is widely used by the public.

Compared to the usual symmetric key cryptography, it uses two

different keys for encryption and decryption process, making it

relatively more secure as the private key is not shared with

anyone else, albeit not without its own set of drawbacks. The

RSA algorithm is one of the most famous and widely used in

real-life applications.

One other example of the public-key algorithms is the

Okamoto-Uchiyama algorithm. While being in the same group

as RSA which relies on integer factorization problem, they use

different methods in generating the keys, as well as the

encryption and decryption processes. While not as popular as

the RSA, it can still be used for the same functionality. This

paper aims to analyze the properties of the Okamoto-Uchiyama

cryptosystem, while being compared to the RSA cryptosystem,

measuring both outputs using similar metrics in hopes that it will

bring better understanding regarding the nature of the two

cryptosystems, as well as their advantages and drawbacks.

II. THEORIES

A. Cryptography

The term cryptography originated from the word “cryptós”

and “gráphein” in Greek language, which could be translated as

secret writing. Cryptography refers to the technique used to

maintain the security of a message. The main processes in

cryptography revolves around encryption, which encode a

message into a ciphertext to make it difficult to read, and

decryption, which decode a ciphertext into the original message

so it may be read by the receiver. The term message that is used

in cryptography actually have a lot of varieties, from simple text

messages, to a more complex form such as images, audio files,

and videos.

Cryptography has long history that could be traced back into

the ancient Egyptian period. A lot of cryptography techniques

have been created since then. The “classic’ cryptography

techniques mostly revolve around substitution and transposition

methods to encrypt the message into ciphertext. The message

itself was mostly limited to basic alphabets, and still uses paper

to write down the message or the ciphertext.

The advent of technology brought a lot of major

improvements to the cryptography techniques. The ‘modern’

cryptography techniques still retain the classic substitution and

transposition principles, while adding new techniques such as

the XOR function, since the messages are mostly processed in

bit or byte forms. The processing power of modern computers

also allow the encryption and decryption processes to be

executed more quickly, while allowing messages of larger sizes

to be processed as well. However, the modern techniques still

have a lot of flaws, which motivates researchers to develop

better methods to counter those flaws, developing cryptography

further as a whole.

B. Public Key Cryptography

Prior to 1970s, the techniques used in cryptography were

classified as the symmetric key cryptography, which used a key

to encrypt a message, while the same key is later used to decrypt

the ciphertext into the original message. As such, the key plays

a major part in the algorithm, but at the same time, should the

key ever fall into the hands of an unauthorized party, the

ciphertext would be vulnerable to many kinds of attack, which

might reveal the message as a whole. Because of that, ensuring

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

that the key is known only to the sender and receiver is crucial,

which usually requires a private channel which might be costly.

The concept of public key cryptography was introduced in

1976, by researchers Whitfield Diffie and Martin E. Hellman, in

the paper “New Directions in Cryptography”. The idea revolves

around using two different keys for encryption and decryption

processes. One is the public key, which as the name implies, is

available to the general public and can be used by anyone. The

other one is the private key, which is kept secret by the owner.

The encryption process would have the sender encrypt the

message using the receiver’s public key. The receiver would

then receive the ciphertext and decrypt it into the original

message using his own private key. The idea could be reversed

as well, which is used as the principle for digital signatures. The

sender would sign a document using his own private key before

sending it. The receiver would then verify the signature using

the sender’s public key, to ensure that the document was not

tampered in any way, while at the same time verify that the

sender was indeed the one who sent the document.

Image 1. Public key cryptography process

Source:(https://www.tutorialspoint.com/cryptography/public

_key_encryption.htm)

The security aspect of the public key cryptography lies in the

fact that it is difficult to derive the private key from the public

key. Public key algorithms use classic calculation problems

which took a tremendous amount of time and computing

resources to generate the public and private keys, such as the

integer factorization problem and the discrete logarithmic

problem. The larger the number that is used in the calculation,

the harder it is to figure out the keys without sufficient info,

which is why most algorithms use large numbers to make sure

it is harder to break.

The public key algorithm answers to the problem in sending

keys through a private channel. Since the private keys will

remain a secret from the general public, there is no reason to

send any keys because anyone can access the public key. At the

same time, the same keys can be used repeatedly in numerous

occasions, while in symmetric key algorithm, the keys need to

be replaced often as a safety measure should a key managed to

be intercepted by an unauthorized party. However, the

encryption and decryption processes done using public key

algorithms tend to have longer execution time than symmetric

key algorithms, due to the calculation of very large numbers.

The messages are generally converted into numbers during the

encryption process, and when calculated together with the key,

would produce a large number that might be even bigger than

the original message, increasing the size of the resulting

ciphertext. As such, most public key algorithms are instead used

to encrypt the key for the symmetric key algorithms, which the

receiver would his own private key to decrypt the symmetric key

which is later used to decrypt the ciphertext into the original

message.

C. Rivest-Shamir-Adleman (RSA) Algorithm

The Rivest-Shamir-Adleman algorithm, also known as the

RSA algorithm, was one of the most well-known public key

algorithms. It was named after its founders, Ronald Rivest, Adi

Shamir, and Len Adleman, and was first introduced in 1976. The

algorithm is based on the prime integer factorization problem.

The method to generate the public and private keys for

encryption and decryption processes are as follows:

1. Select two prime numbers p and q. It is preferred for both

p and q to be quite large to make it harder to decipher.

2. Calculate 𝑛 = 𝑝𝑞

3. Calculate (𝑛), or the totient of n. (𝑛) refers to the

number of integers which are less than n and are

relatively prime to n. It can be calculated using the

formula:

(𝑛) = (𝑝)(𝑞) = (p − 1)(q − 1)
(1)

4. Choose a random integer e such that 1 < e < (𝑛) and e

must be relatively prime to (𝑛)

5. Calculate an integer d using the following formula:

𝑒𝑑 ≡ 1(𝑚𝑜𝑑 (𝑛))
(2)

The formula could be calculated using the Euclidean

algorithm, or using the following formula:

𝑑 =
1 + 𝑘(𝑛)

𝑒

(3)

where k is an integer 1, 2, 3, … which would result in d

being an integer.

6. The public key is the pair (e, n), while the private key is

the pair (d, n). n is called the modulus while e and d are

called the exponents.

Suppose that the sender wishes to encrypt a message, then

he/she must follow the following steps:

1. The message must be separated into blocks m1, m2, …, mi
such that 0 ≤ 𝑖 < 𝑛 − 1.

2. For each message block mi, by using the receiver’s public

key (e, n), calculate the ciphertext block ci using the

following formula:

𝑐𝑖 = 𝑚𝑖
𝑒 𝑚𝑜𝑑 𝑛

(4)

To decrypt the ciphertext back into the original message, the

receiver must follow the following steps:

1. Define the ciphertext blocks c1, c2, …

2. For each ciphertext block ci, by using the receiver’s

private key (d, n), calculate the message block mi using

the following formula:

𝑚𝑖 = 𝑐𝑖
𝑑 𝑚𝑜𝑑 𝑛

(5)

Generally, the private key will remain secure as long as n

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

remains large enough to prevent brute force attacks. The

moment p and q can be figured out, then d can also be derived,

allowing the attacker to be able to decrypt the ciphertext. As

such, it is advised that the numbers should be large enough in

size, at least 100 digits for both p and q.

D. Okamoto-Uchiyama Cryptosystem

The Okamoto-Uchiyama cryptosystem was named after its

founders Tatsuaki Okamoto and Shigenori Uchiyama, and was

introduced in 1998. The algorithm satisfies the property of

homomorphic encryption, where it is possible to perform

calculations on the encrypted data without the need to decrypt

the data first. It also uses a probabilistic property using a random

constant when encrypting each part of the message.

The method to generate the public and private keys follows

these set of steps:

1. Select two prime numbers p and q. Both p and q must

have the same length k-bits.

2. Calculate 𝑛 = 𝑝2𝑞

3. Select a random generator g such that 1 < 𝑔 < 𝑛 − 1,

and 𝑔𝑝−1 ≢ 1 𝑚𝑜𝑑 𝑝2. Haryanto et al [2] further

simplifies this equation and the value g is valid as long as

it satisfies:

𝑔(𝑝2) = 𝑔𝑝(𝑝−1) 𝑚𝑜𝑑 𝑝2 = 1

(6)

4. Calculate ℎ = 𝑔𝑛 (𝑚𝑜𝑑 𝑛)

5. The public key is (n, g, h), while the private key is the

pair (p, q)

The encryption process will use a random constant which will

lead to a probabilistic cryptosystem. The encryption steps are as

follows:

1. Ensure message m satisfies 0 < 𝑚 < 2𝑘−1

2. Select random integer 𝑟 ∈ ℤ/𝑛ℤ

3. Generate ciphertext c using the formula:

𝑐 = 𝑔𝑚ℎ𝑟 (𝑚𝑜𝑑 𝑛)

(7)

The decryption process will follow these steps:

1. Define function L(x) as:

𝐿(𝑥) =
𝑥 − 1

𝑝

(8)

2. From ciphertext c, derive the message m using the

formula:

𝑚 =
𝐿(𝑐𝑝−1 𝑚𝑜𝑑 𝑝2)

𝐿(𝑔𝑝−1 𝑚𝑜𝑑 𝑝2)
 (𝑚𝑜𝑑 𝑝)

(9)

The cryptosystem satisfies the following homomorphic

encryption, that is for any two plaintexts 𝑚0 and 𝑚1where 𝑚0 +
𝑚1 < 𝑝,

𝐸(𝑚0, 𝑟0) ∗ 𝐸(𝑚1, 𝑟1) = 𝐸(𝑚0 + 𝑚1, 𝑟2)

(10)

where 𝐸(𝑚, 𝑟) represents the encryption process of message

m with random constant r. However, as Haryanto et al [2] stated,

the equation is only satisfiable as long as 𝑟2 remains dependent

on both 𝑟0 and 𝑟1, for example, by process of addition. In the

event where 𝑟0, 𝑟1, and 𝑟2 are completely independent from each

other, then the equation would be proven false.

III. TESTING

A. Hardware Specifications

The testing is done using the author’s personal laptop. The

specifications are as follows:

Operating System Windows 10 Home Single

Language

Processor AMD Ryzen 5 4600H with

Radeon Graphics

CPU @ 3.00 GHz

Architecture 64-bit OS

Memory 8.00 GB

Table 1. List of hardware specifications used for the testing

period

B. Algorithms

Both the RSA and the Okamoto-Uchiyama algorithms are

implemented using the programming language Python, with

additional functions used from the library libnum,

pycryptodomex, and hashlib. The functions used in the

Okamoto-Uchiyama algorithm are as follows:

1. def gen_key(k):

2. p = getPrime(k)

3. q = getPrime(k)

4. n = p**2 * q

5. while True:

6. g = getRandomRange(1, n-1)

7. if pow(g, p * (p-1), p**2) ==

1:

8. break

9. r = getRandomRange(1, n-1)

10. h = pow(r, n, n)

11. return (n, g, h,p,q)

12.

13. def string_to_int(string):

14. temp = ""

15. for i in range(len(string)):

16. if(string[i] != ' '):

17. rep = ord(string[i]) - 38

18. else:

19. rep = 99

20. temp = temp + str(rep)

21.

22. return int(temp)

23.

24. def int_to_string(num):

25. numstring = str(num)

26. string = ""

27. arr = [numstring[i:i+2] for i in

range(0, len(numstring), 2)]

28. for element in arr:

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

29. temp = int(element)

30. if(temp != 99):

31. string = string + chr(temp

+ 38)

32. else:

33. string = string + ' '

34.

35. return string

36.

37.

38. def encrypt(m, n, g, h):

39. num = str(string_to_int(m))

40. arr = [num[i:i+2] for i in

range(0, len(num), 2)]

41. c = []

42. for element in arr:

43. r = getRandomRange(1, n)

44. temp = (pow(g, int(element),

n) * pow(h, r, n)) % n

45. c.append(temp)

46. return c

47.

48. def L(x, p):

49. return (x-1)//p

50.

51. def divide(x, y, p):

52. return x*(libnum.invmod(y, p))

53.

54. def decrypt(c,p, g):

55. message = ""

56. for element in c:

57. cp = pow(int(element), p-1,

p**2)

58. gp = pow(g, p-1, p**2)

59.

60. x = divide(L(cp, p), L(gp, p),

p) % p

61. message = message +

int_to_string(x)

62. return message

Code 1. Functions for the Okamoto-Uchiyama algorithm

It is to be noted that this implementation doesn’t cover all

possible characters for the encryption process, as the integer

representation for each character is modified so it will consist of

exactly two digits. In return for allowing all letters and numbers

to be encrypted, characters with ASCII decimal value below 48

will cause an error during the decryption process, with the

exception of the character SPACE which is converted so it will

be represented using the value 99.

The functions used in the RSA algorithm are as follows:

1. def gcd(a, b):

2. while b != 0:

3. a, b = b, a % b

4. return a

5.

6. def generate_keypair(k):

7. p = getPrime(k)

8. q = getPrime(k)

9. n = p * q

10.

11. toitent = (p-1) * (q-1)

12. e = getRandomRange(1, toitent)

13.

14. g = gcd(e, toitent)

15. while g != 1:

16. e = getRandomRange(1, toitent)

17. g = gcd(e, toitent)

18.

19. d = libnum.invmod(e, toitent)

20.

21. return ((e, n), (d, n))

22.

23. def encrypt(public, plaintext):

24. e, n = public

25. cipher = [pow(ord(char),e,n) for

char in plaintext]

26. return cipher

27.

28. def decrypt(private, ciphertext):

29. d, n = private

30. plain = [chr(pow(char,d,n)) for

char in ciphertext]

31. return ''.join(plain)

Code 2. Functions for the RSA algorithm

C. Testing Parameters

The parameters that will be tested and compared are as

follows:

1. Key generation time with varying key sizes

2. Ciphertext size compared to the original message size

with varying message

3. Encryption time with varying key and message sizes

4. Decryption time with varying key and message sizes

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

IV. TESTING RESULTS AND ANALYSIS

A. Testing Results

The results of the testing processes are as follows:

1. Key generation

p

and

q
size
(bits

)

Generation time (s)

RSA Okamoto-Uchiyama

64
0.0039973258972167

97

0.002995729446411

133

128
0.0069887638092041

016

0.016010046005249

023

256
0.0139970779418945

31

0.037018775939941

406

512
0.1039998531341552

7

0.126149177551269

53

1024 0.4341142177581787
0.355906963348388

67

2048 1.7667217254638672
1.995470285415649

4

2. Ciphertext size

For this test, the prime integers p and q will have the size

of 64 bits each. The ciphertext is in text form, so each

digit is counted as 1 byte.

Plaintext

size

(bytes)

Ciphertext size (bytes)

RSA Okamoto-Uchiyama

10 386 576

100 3839 5757

1000 38367 57775

10000 383404 572367

100000 3826852 5732172

1000000 38498965 57673554

3. Encryption time

Plaint

ext

size

(bytes

)

p

and

q
size
(bit
s)

Encryption time (s)

RSA
Okamoto-

Uchiyama

10 128
0.002014398574

8291016

0.003980159759

521484

10 256
0.005997419357

299805

0.016995429992

67578

10 512
0.030988454818

725586

0.103999376296

99707

100 128
0.012000322341

918945

0.034011125564

575195

100 256
0.054015874862

6709

0.162000417709

35059

100 512
0.284131050109

8633

1.062177658081

0547

1000 128
0.102071046829

22363

0.330856800079

3457

1000 256
0.509296894073

4863

1.624149560928

3447

1000 512
2.833071708679

199

10.26911187171

936

4. Decryption time

Plaint

ext

size

(bytes

)

p

and

q
size
(bit
s)

Decryption time (s)

RSA
Okamoto-

Uchiyama

10 128
0.001996755599

975586

0.002001047134

399414

10 256
0.006000518798

828125

0.007975101470

947266

10 512
0.034020185470

581055

0.037991523742

67578

100 128
0.012655258178

710938

0.017999887466

430664

100 256
0.061014413833

618164

0.071998357772

82715

100 512
0.343044757843

0176

0.366112232208

25195

1000 128
0.122325658798

21777

0.179152727127

0752

1000 256
0.606773853302

002

0.708589076995

8496

1000 512
3.450299739837

6465

3.742982625961

3037

B. Analysis

From the test results, it can be seen that the key generation

times for both algorithms are relatively similar with only slight

difference between them. Both algorithms have some similar

calculations within the key generating process, although the

random generator part might cause some differences due to the

random nature which might need longer time to generate a

number that satisfies the rule.

While both algorithms generate ciphertext with at least 10

times larger size than the original plaintext, the ciphertext size

from the Okamoto-Uchiyama algorithm are generally larger

than the RSA. This is most likely due to the fact that the

algorithm works with 𝑛 = 𝑝2𝑞 compared of RSA’s 𝑛 = 𝑝𝑞.

The resulting 𝑛 would be larger in size, and when is used to

generate the random constant and during the modulo function,

the resulting ciphertext would be generally have larger size as

well.

The encryption and decryption times are slightly different for

both algorithms. In RSA’s case, the decryption time is usually

faster until some point where the encryption time becomes

faster, although both times are relatively similar with not no

significant difference. This is probably because the encryption

and decryption calculations for RSA are almost identical to each

Makalah IF4020 Kriptografi – Sem. I Tahun 2020/2021

other, so it depends on how large the value of the exponents,

which are e and d. In Okamoto-Uchiyama’s case, the decryption

time is always faster than the encryption time during the testing

period. This is due to the fact that the encryption process works

using exponents m and r, both are heavily influenced by the

length of the message as well as the length of the primes. On the

other hand, the decryption process uses only p for the exponent,

which would make the calculation faster than the encryption.

That being said, due to the nature of the exponent calculation,

increasing the variables of message length and primes’ length

would cause significant rise in both encryption and decryption

times once they have passed a certain value.

V. CONCLUSION

From the test results, it can be concluded that the RSA

cryptosystem is generally faster than the Okamoto-Uchiyama

cryptosystem, both from the key generation process, as well as

the encryption and decryption processes. On the other hand,

Okamoto-Uchiyama provides larger ciphertext from the

encryption process, which might be preferable to prevent known

ciphertext attacks. With homomorphic and probabilistic

encryption properties, it could be said that the algorithm is safer

compared to the RSA, especially if there are necessities to do

calculations on the data without decrypting it first. But in the

end, both algorithms have their own strengths and weaknesses,

and it can’t be said that one is better than the other in all aspects.

So, it goes back to which one is more suitable depending on the

prerequisites of the solution.

VI. ACKNOWLEDGMENT

The author would first express his thanks to God, for without

His blessing and guidance, it wouldn’t be possible to complete

this paper. The author also would like to express his utmost

gratitude to Dr. Ir. Rinaldi Munir, MT. as the lecturer for the

course IF4020 Kriptografi, who had given knowledge related to

the topic as well as guidance throughout the semester. Lastly,

the author would like to thank all of the author’s friends who

had given moral support until this paper has been concluded.

REFERENCES

[1] Okamoto T., Uchiyama S. (1998) A new public-key cryptosystem as
secure as factoring. In: Nyberg K. (eds) Advances in Cryptology —

EUROCRYPT'98. EUROCRYPT 1998. Lecture Notes in Computer

Science, vol 1403. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/BFb0054135.

[2] Haryanto, L., et al (2019). On the Okamoto-Uchiyama cryptosystem: (A

brief essay on basic mathematics applied in cryptography). Journal of
Physics: Conference Series. 1341. 042013. 10.1088/1742-

6596/1341/4/042013..

[3] Munir, Rinaldi. 2020. Algoritma RSA.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-

2021/Algoritma-RSA-2020.pdf (diakses tanggal 19 Desember 2020)

[4] Munir, Rinaldi. 2020. Kriptografi Kunci-Publik.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-

2021/Kriptografi-Kunci-Publik-2020.pdf (diakses tanggal 19 Desember

2020)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 Desember 2020

Kevin Sendjaja / 13517023

